Dense pure subgroups of locally compact groups
نویسندگان
چکیده
منابع مشابه
Pure extensions of locally compact abelian groups
In this paper, we study the group Pext(C, A) for locally compact abelian (LCA) groups A and C. Sufficient conditions are established for Pext(C, A) to coincide with the first Ulm subgroup of Ext(C, A). Some structural information on pure injectives in the category of LCA groups is obtained. Letting C denote the class of LCA groups which can be written as the topological direct sum of a compactl...
متن کاملSpaces of Closed Subgroups of Locally Compact Groups
The set C(G) of closed subgroups of a locally compact group G has a natural topology which makes it a compact space. This topology has been defined in various contexts by Vietoris, Chabauty, Fell, Thurston, Gromov, Grigorchuk, and many others. The purpose of the talk was to describe the space C(G) first for a few elementary examples, then for G the complex plane, in which case C(G) is a 4–spher...
متن کاملOn component extensions locally compact abelian groups
Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...
متن کاملBracket Products on Locally Compact Abelian Groups
We define a new function-valued inner product on L2(G), called ?-bracket product, where G is a locally compact abelian group and ? is a topological isomorphism on G. We investigate the notion of ?-orthogonality, Bessel's Inequality and ?-orthonormal bases with respect to this inner product on L2(G).
متن کاملFrom Locally Compact Groups
Two Banach algebras are naturally associated with a locally compact group G: the group algebra, L,(G), and the measure algebra, M(G). For these two Banach algebras we determine all isometric involutions. Each of these Banach algebras has a natural involution. We will show that an isometric involution, (*), is the natural involution on £'(<?) if and only if the closure in the strict topology of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1993
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1993-1145946-0